
intelligent Digital Systems Lab

fpgaConvNet: A Toolflow for Mapping Convolutional Neural
Networks on Embedded FPGAs

Dept. of Electrical and Electronic Engineering

Dr. Christos-Savvas Bouganis

Marionet UK Many-core Research Network
11th of September, Bristol University, UK

intelligent Digital Systems Lab

www.imperial.ac.uk/idsl

intelligent Digital Systems Lab

Stylianos I. Venieris
Machine Learning

Alexandros Kouris
Machine Learning,
Robotics

Konstantinos Boikos
Computer Vision,
SLAM

Christos-Savvas Bouganis
iDSL Lab Director
Imperial College London

Manolis Vasileiadis
Computer Vision

Mudhar Bin Rabieah
Machine Learning

Nur Ahmadi
Brain-Machine Interface

The team

intelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements

High-Throughput Applications Low-Latency ApplicationsMultiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

3

intelligent Digital Systems Lab

Power constraints
• Absolute power consumption
• Performance-per-Watt

High-Throughput Applications

Low-Latency Applications

Multiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

DNNs in the Embedded Space – Variability in Performance Requirements

4

intelligent Digital Systems Lab

GPUs – Tegra K1, X1 and X2
DSPs – Qualcomm Hexagon,

Apple Neural Engine, …

Conventional and Unconventional Embedded Platforms for Neural Networks

✓ High throughput
✗ Low latency
✗ Low power

Challenge: Huge design space
Our Approach: Automated toolflows5

✓ Tools ✗ Tools

FPGAs
• Custom datapath
• Custom memory subsystem
• Programmable interconnections
• Reconfigurability

✓ High throughput
✓ Low latency
✓ Low power

FPGA

Look-Up
Tables

Flip Flops

DSP Blocks

On-chip
RAM

External Memory
(DRAM)

customisation

TPU

GraphCore

Myriad X

intelligent Digital Systems Lab

Research Areas / Challenges

Mapping Automation

Multiple CNN Mapping

6

intelligent Digital Systems Lab

Challenge #1:
Mapping
Automation

intelligent Digital Systems Lab

Challenge #1: Mapping Automation

Deep Learning Developers

Little knowledge about FPGAs
Ease of deployment
“Good” designs

Challenges:
• Learn to design hardware
• High-dimensional design space
• Diverse application-level needs
• High utilization of the FPGA resources
• Design automation (+> change of requirements)

Would like to:
– Target FPGAs
– Optimise for

high performance

8

intelligent Digital Systems Lab

Network Description FPGA Target Platform
Specifications

Automated Design
Space Exploration

Network Hardware
Mapping

Supplied by
Deep Learning Expert

Performance
Requirements

fpgaConvNet

Challenge #1: Automated CNN-to-FPGA Toolflow

intelligent Digital Systems Lab

fpgaConvNet – CNN Modelling Framework

Key Characteristics

• Differentiation factors:
• Streaming architecture
• Hardware design tailored to the target CNN
• No limit on #weights, or size of CNN

Streaming

Analytical Power

Customisation

duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by II

max. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate

· (D + II

max · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref) =
NPX

i=1

ti(M,�ref) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:

1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned

3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL
with the alignment shifts for each column

5: Identity matrices Ir
N⇥N and Il

M⇥M

6: Lower shift matrices Sr
N⇥N and Sl

M⇥M

Steps:

1: W aligned
=

h
W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the i

th
subgraph that need alignment do

3: - - - Align along the pipeline, (right shift) - - -

4: - Form right alignment matrix Ar 2 RN⇥N
-

5: Ar
=


Ir
1:col�1,S

r
col:col+si

col

, Ir
col+si

col
+1:N

�

6: - Update the overall right alignment matrix -

7: Ar
o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned
= W aligned ·Ar>

o
9: - - - Align the interconnections (down shift) - - -

10: - Form left alignment matrix Al 2 RM⇥M
-

11: Al
=


Il
1:col�2,S

l
col�1:col+si

col
�1

, Il
col+si

col
:M

�

12: - Update the overall left alignment matrix -

13: Al
o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith

subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

Max Throughput or Min Latency

Performance

Resources

• Synchronous Dataflow Modelling for CNNs
− CNN as a data-driven graph
− Workload is represented as a matrix
− Each layer mapped to a tunable set of hardware building

blocks

• Design space exploration based on transformations
• Coarse-grained folding
• Fine-grained folding
• Graph partitioning with reconfiguration
• Weight Reloading

intelligent Digital Systems Lab

Under the hood: Convolutional Neural Networks (ConvNets)

11

convolution
+ nonlinearity

pooling convolution
+ nonlinearity

pooling

• ConvNet Inference
– Tailored to images and data with spatial patterns

– Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

– Feedforward operation

– Inherently streaming
Multiple dot

products
Nonlinear
Operator

Max or average
in a vector

intelligent Digital Systems Lab

fpgaConvNet – Streaming Architecture for CNNs

Src Sliding
Window Fork

Conv Unit

Conv Unit

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Memory
Interface

Convolutional Layer with 4 filters Nonlin
Layer

Pooling Layer

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

Convolutional Layer

intelligent Digital Systems Lab

fpgaConvNet – Streaming Architecture for CNNs

Src
Sliding

Window Fork

Conv
Unit

Conv
Unit

Conv
Unit

Conv
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

CNN Hardware SDF Graph

0
1
2
3
4
5
6

0 5 10

Th
ro

ug
hp

ut

Resources

Design Space

Current Design
PointFPGA 2

FPGA 1Complex Modelè Bottlenecks:
− Limited compute resources
− Limited on-chip memory capacity for model parameters
− Limited off-chip memory bandwidth

Define a set of graph transformations to traverse
the design space in fast and principled way

intelligent Digital Systems Lab

Transformation 1: Coarse-grained Folding

Src Sliding
Window Fork

Conv Unit

Conv Unit

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

4 Convolutions/cycle

1) Exceeding the available compute
resources

2) Not enough off-chip memory
bandwidth

intelligent Digital Systems Lab

Transformation 1: Coarse-grained Folding

Src Sliding
Window Fork

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Fork

Fork

2 Convolutions/cycle

Compute Resources

Required Bandwidth
Transformation 2

Fine-grained Folding

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

1) Exceeding the available
compute resources

2) Not enough on-chip
memory capacity FPGA Reconfiguration

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

1) Exceeding the available
compute resources

2) Not enough on-chip
memory capacity FPGA Reconfiguration

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Architecture 1 Architecture 2 Architecture 3

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip

memory

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip

memory

Architecture 1 Architecture 2 Architecture 3

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip

memory

Architecture 1 Architecture 2 Architecture 3

intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip

memory

Architecture 1 Architecture 2 Architecture 3

• Batch processing amortises
reconfiguration cost → high throughput

• Latency-sensitive applications?

intelligent Digital Systems Lab

Transformation 4: Weights Reloading

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Load Conv Layer 2 Weights

Load Conv Layer 3 Weights

time

Run-time vs bitstream-level reconfiguration
to explore the latency-throughput trade-off

intelligent Digital Systems Lab

Transformation 4: Weights Reloading

Workload 2Workload 1

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Workload 3

• Reload weights from off-chip memory
and reconfigure datapath

• Run network over batch
• Write-back to off-chip memory

Convolution
Bank
max K: 7x7

Nonlinear
Bank
Type: ReLU

Pooling
Bank
max P: 2x2

Generated Reference Architecture

Input
Data

intelligent Digital Systems Lab

fpgaConvNet – Design Space Exploration and Optimisation

• SDF-based Framework

− Capture hardware mappings as matrices

− Transformations as algebraic operations

− Any local transformation propagates
through the network

− Static Scheduling

− Analytical performance model

− Cast design space exploration
as a multiobjective optimization problem

Design 1

Design 2

Hardware Stages Interconnections
duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by II

max. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate

· (D + II

max · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref) =
NPX

i=1

ti(M,�ref) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:

1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned

3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL
with the alignment shifts for each column

5: Identity matrices Ir
N⇥N and Il

M⇥M

6: Lower shift matrices Sr
N⇥N and Sl

M⇥M

Steps:

1: W aligned
=

h
W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the i

th
subgraph that need alignment do

3: - - - Align along the pipeline, (right shift) - - -

4: - Form right alignment matrix Ar 2 RN⇥N
-

5: Ar
=


Ir
1:col�1,S

r
col:col+si

col

, Ir
col+si

col
+1:N

�

6: - Update the overall right alignment matrix -

7: Ar
o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned
= W aligned ·Ar>

o
9: - - - Align the interconnections (down shift) - - -

10: - Form left alignment matrix Al 2 RM⇥M
-

11: Al
=


Il
1:col�2,S

l
col�1:col+si

col
�1

, Il
col+si

col
:M

�

12: - Update the overall left alignment matrix -

13: Al
o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith

subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

intelligent Digital Systems Lab

Meeting the performance requirements

intelligent Digital Systems Lab

0 50 100 150 200 250

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)

TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)

• Latency-driven scenario à batch size of 1
• Up to 6.65× speedup with an average of 3.95×

(3.43× geo. mean)

0 50 100 150 200 250

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)

TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)

• Throughput-driven scenario à favourable batch size
• Up to 5.53× speedup with an average of 3.32×

(3.07× geo. mean)

fpgaConvNet vs Embedded GPU (GOp/s) for the same absolute power constraints (5W)

Comparison with Embedded GPUs: Same absolute power constraints (5W)

26

intelligent Digital Systems Lab

0 10 20 30 40 50 60

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s/W)

TensorRT - GPU TX1 FP16 @ 998 MHz (GOp/s/W)

• Latency-driven scenario à batch size of 1
• Average of 1.70× (1.36× geo. mean) in GOp/s/W

fpgaConvNet vs Embedded GPU (GOp/s/W)

• Throughput-driven scenario à favourable batch size
• Average of 1.17× (1.12× geo. mean) in GOp/s/W

0 10 20 30 40 50 60

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s/W)

TensorRT - GPU TX1 FP16 @ 998 MHz (GOp/s/W)

Comparison with Embedded GPUs: Performance-per-Watt

intelligent Digital Systems Lab

Results: Comparison with existed FPGA frameworks

0

0.5

1

1.5

2

2.5

AlexNet (Z020) VGG-16 (Z020) AlexNet (Z045) VGG-16 (Z045)

AlexNet and VGG-16 on Zynq 7020 and 7045

fpgaConvNet DeepBurning DnnWeaver Angel-Eye

No
rm

al
ise

d
sp

ee
d-

up

intelligent Digital Systems Lab

Other approachesToolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 0:3

Table 1. CNN-to-FPGA Toolflows

Tool�ow Name Interface Year

fpgaConvNet [86][87][88][85] Ca�e & Torch May 2016
DeepBurning [90] Ca�e June 2016
Angel-Eye [68][23][24] Ca�e July 2016
ALAMO [58][56][57][55][59] Ca�e August 2016
H�����2 [1][2] Ca�e September 2016
D��W����� [75][76] Ca�e October 2016
Ca�eine [98] Ca�e November 2016
AutoCodeGen [54] Proprietary Input Format December 2016
F��� [84][19] Theano February 2017
FP-DNN [22] TensorFlow May 2017
Snow�ake [21][10] Torch May 2017
SysArrayAccel [91] C Program June 2017
FFTCodeGen [100][97][96][95] Proprietary Input Format December 2017

2 CNN-TO-FPGA TOOLFLOW CHARACTERISTICS
In this section, existing tool�ows are analysedwith respect to their applicability, designmethodology
and performance. The applicability to an end user is investigated based on the supported neural
network models, the input interface and the portability. The design methodology is examined based
on the hardware architecture, the design space exploration approach and the arithmetic precision
choices. Finally, the performance is analysed based on the reported results of each tool�ow.

2.1 Supported Neural Network Models
The application scope of a framework determines the range and type of applications it can target.
The majority of the existing tool�ows limit their focus on the automated mapping of CNN inference,
with F��� focusing on the more speci�c �eld of Binarised Neural Networks (BNNs) [37]. The most
common types of layers in a CNN are the convolutional (CONV), nonlinear (NONLIN), pooling
(POOL) and fully-connected (FC) layers [47]. All existing frameworks support these layers, with
ALAMO, DeepBurning, D��W����� and AutoCodeGen also supporting Local Response Normali-
sation (NORM) layers [46]. Moreover, fpgaConvNet, ALAMO and Snow�ake focus mostly on the
feature extractor part of CNNs, including CONV, NONLIN and POOL layers, and o�er unoptimised
support for FC layers by casting them as CONV layers with 1⇥1 kernels. With respect to compound,
irregular CNN building blocks, residual blocks [33] are supported by fpgaConvNet, ALAMO and
Snow�ake, Inception modules [83][82] by fpgaConvNet and Snow�ake and dense blocks [36] by
fpgaConvNet. H�����2 requires all the weights to be stored on-chip and therefore the supported
model size is constrained by the storage resources of the target device. Currently, DeepBurning
and FP-DNN demonstrate the widest range of supported applications by also supporting Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [34].

2.2 Interface
2.2.1 Input. The input interface of an FPGA framework plays a decisive role in its ease-of-use

and accessibility to CNN developers. Ca�e constitutes the most widely supported front end with
support from seven of the FPGA frameworks, including fpgaConvNet, DeepBurning, Angel-Eye,
ALAMO, H�����2, D��W����� and Ca�eine, due to its structured, protobuf-based11 syntax, the
vast availability of pretrained models12 and the large user community. fpgaConvNet and Snow�ake
also provide back ends to Torch and FP-DNN has selected TensorFlow as its front end. With Theano
being the �rst framework to support BNNs, F��� supports Theano-de�ned BNNs as its input.
11https://developers.google.com/protocol-bu�ers/ 12http://ca�e.berkeleyvision.org/model_zoo.html

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.

0:24 S. I. Venieris, A. Kouris and C. S. Bouganis

Supported
NN Models

FPGA
Portability

Optimisation
Objective

Arithmetic
Precision

Performance
Density

fpgaConvNet

SysArrayAccel

Angel-Eye

ALAMO

DnnWeaver

Caffeine

FINN

FP-DNN

DeepBurning

HADDOC2

AutoCodeGen

Snowflake

FFTCodeGen

Architecture
Streaming
Single-Engine

Device Family
Intel
Xilinx

Fig. 7. Overview of toolflow characteristics

Snow�ake’s design principle places programmability and high utilisation of the computational
resources at the forefront. In this respect, both Snow�ake’s architecture and compiler are tailored
to removing ine�ciencies and extracting close to peak performance from the allocated resources.
Overall, Snow�ake favours programmability over hardware specialisation, by employing a �xed
hardware design and customising with respect to the target model only at the compiler level.
Finally, FFTCodeGen addresses CNN acceleration from both an algorithmic and an architec-

tural level. In contrast to the rest of the tool�ows, convolutions are performed in the frequency
domain with a signi�cantly lower computational complexity. Moreover, the free parameters of the
algorithm and the architecture enable the generated compute engine to sustain high throughput
across convolutional layers of di�erent sizes and fully exploit the computational complexity gains.
Furthermore, the use of the powerful, server-grade CPU of the target Intel HARP platform allevi-
ates the complexities of mapping the memory-bounded fully-connected layers to hardware and
further contributes to FFTCodeGen’s throughput gains, making it suitable for throughput-driven
cloud-based applications.

2.9 Other Related Work
Apart from the presented tool�ows, several FPGA-based designs for CNNs have been proposed
by the FPGA community. These include highly optimised, hand-tuned accelerators for particular
CNN-FPGA pairs in RTL [18][16][49], HLS [6][44] and mixed RTL-HLS [101], together with designs
that focus on optimising the external memory bandwidth utilisation [5][77]. A number of existing
works lie close to the presented CNN-to-FPGA tool�ows, but lack essential components that would
form a complete automated �ow. These include [61][81][62][15], with [61][81][62] focusing on the
design space exploration task and [15] presenting an FPGA back end to Ca�e, for the execution of
3 ⇥ 3 convolutional layers by means of the Winograd transform.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.

Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis, "Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future Directions", ACM Computing Surveys, 2018

intelligent Digital Systems Lab

Challenge #2:
Multi-CNN Systems

intelligent Digital Systems Lab

Challenge #2: Multi-CNN Systems – Autonomous Drones

Camera

Object Detection Semantic
Segmentation Navigation Monitoring Domain Task

Se
t o

f C
NN

s

FPGA GPU DSPTa
rg

et

Pl
at

fo
rm

Mapping?

32

intelligent Digital Systems Lab

The Problem setting and Challenges

Given a number of CNNs:
CNN1, CNN2, …, CNNN

find a mapping to an FPGA device that meets user requirements such
as Latency and Throughout per CNN

(Extra) Challenges:
• Resource allocation per CNN
• Memory Bandwidth allocation per CNN
• Scalability

intelligent Digital Systems Lab

Challenge #2: Multi-DNN System

Challenges:
• Resource allocation among CNNs
• Design automation
• Models with different performance

constraints, e.g. required throughput and
latency

• Competing for the same pool of
resources

• High-dimensional design space

Set of CNNs
Target Platform
Specifications

Per-CNN
Performance
Requirements

Supplied by
Deep Learning Expert

Optimised
Mapping

F-CNNx

intelligent Digital Systems Lab

Key characteristics

• One hardware engine per CNN – highly customisable

• Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture

C-PE

Weights Mem.

C-PE

Weights Mem.

C-PE

Weights Mem.

PE Folding

Weights Mem.

Dot-product Unit

Folding

Conv

Layer

Pool

Layer

Conv

Layer

Pool

Layer

Conv

Layer

Conv

Layer

Pool

Layer

CNN Engine1

CNN Engine 2

Conv

Layer

Pool

Layer

Conv

Layer

Pool

Layer

CNN Engine N

…

Multi-CNN Hardware

Scheduler FPGA

Off-chip Memory

…

35

Compute Engines

Memory Interface

Compute Engines

intelligent Digital Systems Lab

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

Conv
Layer

Conv
Layer

Pool
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

CNN Engine N

…

Multi-CNN Hardware
Scheduler FPGA

Off-chip Memory

36

Pipeline structure Γ"

Parameter Symbol

intelligent Digital Systems Lab

Multi-CNN Hardware Architecture

37

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

Pipeline structure Γ"

Parameter Symbol

No. of PEs in each
stage NPE,i,j

No of MAC operators
within each PE

Nop,i,j

C-PE

Weights Mem.

C-PE

Weights Mem.

C-PE

Weights Mem.
PE Folding

Weights Mem.

Dot-product Unit
Folding

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

Conv
Layer

Conv
Layer

Pool
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

CNN Engine N

…

Multi-CNN Hardware
Scheduler FPGA

Off-chip Memory

…

intelligent Digital Systems Lab

S

Multi-CNN Hardware Architecture

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

38

Pipeline structure Γ"

Parameter Symbol

No. of PEs in each
stage NPE,i,j

No of MAC operators
within each PE Nop,i,j

Schedule

C-PE

Weights Mem.

C-PE

Weights Mem.

C-PE

Weights Mem.
PE Folding

Weights Mem.

Dot-product Unit
Folding

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

Conv
Layer

Conv
Layer

Pool
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

CNN Engine N

…

Multi-CNN Hardware
Scheduler FPGA

Off-chip Memory

…

intelligent Digital Systems Lab

Proposed Design Space Exploration Method

Target set of CNNs

intelligent Digital Systems Lab

Proposed Design Space Exploration Method

On-chip Resource Feasibility

Off-Chip
Memory

Off-Chip
Memory

intelligent Digital Systems Lab

Off-Chip Memory

An example

CONV7x
7

ReLU MAX POOL

CONV
5x5

ReLU MAX POOL

CONV
5x5

ReLU

CNN1

CONV3x
3

ReLU MAX POOL

CONV
3x3

ReLU

CNN2

For each CNN
− A set of subgraphs
− Bandwidth requirements

Possible memory contention

intelligent Digital Systems Lab

Proposed Design Space Exploration Method

• Memory contention

• Problem 1: Performance model =! Actual
performance (scheduler)

• Problem 2: Not full utilization of the memory
bandwidth

• CNN inference over a stream of inputs

− Cast to a cyclic scheduling problem
− Search for a periodic solution

• Optimal ILP scheduler has very high runtimes for large-sized

problems

• We propose a heuristic Resource Constrained List Scheduler
(RCLS).

intelligent Digital Systems Lab

Slow-down Scheduler

CONV
7x7

ReLU MAX POOL

CONV
5x5

ReLU MAX POOL

CONV
5x5

ReLU

CNN1

CONV
3x3

ReLU MAX POOL

CONV
3x3

ReLU

CNN2

• Increase the latency and
decrease the bandwidth
proportionally

• One slow-down factor per
subgraph

Latency Increase

Bandwidth Decrease

intelligent Digital Systems Lab

The effect of slow-downs

2
3

2

time

2

3

1

CONV
7x7

ReLU MAX POOL

CONV
5x5

ReLU MAX POOL

CONV
5x5

ReLU

CNN1 - Subgraph 1

CNN2 - Subgraph 1

CNN3 - Subgraph 1

Bandwidth Requirement: 1.5 GB/s

Bandwidth Requirement: 0.25 GB/s

Bandwidth Requirement: 0.75 GB/s

CONV
7x7

ReLU MAX POOL

CONV
5x5

ReLU MAX POOL

CONV
5x5

ReLU

CNN1 - Subgraph 1

CNN2 - Subgraph 1

CNN3 - Subgraph 1

Bandwidth Requirement: 1.2 GB/s

Bandwidth Requirement: 0.2 GB/s

Bandwidth Requirement: 0.56 GB/s

Slowdown1_1:

0.8x

Slowdown3_1:

0.75x

Slowdown2_1:

0.8x

Exec Time: 0.05 ms Exec Time: 0.062 ms

Exec Time: 0.031 msExec Time: 0.025 ms

Exec Time: 0.02 ms Exec Time: 0.026 ms

1

2 GB/s

time

2 GB/s

0.07 ms
0.0625 ms

Available Memory Bandwidth: 2 GB/s

Scheduler Scheduler + slow downs

intelligent Digital Systems Lab

• 3-CNN benchmark on ZC706

• Explored joint design points appear in triplets
− Blue à peak platform-supported performance per CNN
− Red à contention-unaware design
− Yellow à memory-aware design

Effect of the Proposed DSE

Memory-aware
scheduling

Memory-unaware
scheduling

Full platform available bandwidth for each CNN engine

45

intelligent Digital Systems Lab

Comparison with Embedded GPUs

46

• Latency-driven scenario à batch size of 1

• Up to 19.09× speedup with an average of
6.85× (geo. mean)

0 5 10 15 20

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1 at 5W

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W) (5W)

• Latency-driven scenario à batch size of 1

• Up to 9.61× speedup with an average of
2.76× (geo. mean)

0 5 10 15 20 25 30

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W)

intelligent Digital Systems Lab

Conclusions

• Performance (efficiency) comes from customisation

• ML applications:
• Fast moving area => new computational blocks appear frequently
• Diverse application areas (ADAS, drones, Video analytics)

• To improve hardware’s efficiency
=> highly customisable architecture

=> large design space

• Need for Tools

intelligent Digital Systems Lab
Summary

Research topics

Mapping Automation

Multiple CNN Mapping

Time-constrained Inference

Privacy-aware Deep Learning

www.imperial.ac.uk/idsl

A. Kouris and C-S Bouganis, "Learning to Fly by MySelf: A Self-Supervised
CNN-based Approach for Autonomous Navigation", IROS, 2018

intelligent Digital Systems Lab
Publications www.imperial.ac.uk/idsl

Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the performance limits of quantisation. In
SysML.

Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the Performance Limits of Quantisation in
Convolutional Neural Networks. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL).

C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. S. Bouganis. 2018. DroNet: Efficient Convolutional Neural Network Detector for Real-
Time UAV Applications. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 967–972.

Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Approximate FPGA-based LSTMs under Computation
Time Constraints. In Applied Reconfigurable Computing - 14th International Symposium, ARC 2018, Santorini, Greece, May 2 - 4, 2018, 3–15.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2016. fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs. In
2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 40–47.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on
Embedded FPGAs. In NIPS 2017 Workshop on Machine Learning on the Phone and other Consumer Devices.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: Automated Mapping of Convolutional Neural Networks on FPGAs
(Abstract Only). In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 291–292.

S. I. Venieris and C. S. Bouganis. 2017. Latency-Driven Design for FPGA-based Convolutional Neural Networks. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).

S. I. Venieris and C. S. Bouganis. 2018. f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs. In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL).

Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Convolutional Neural Networks on FPGAs: A
Survey and Future Directions. In ACM Computing Surveys 51, 3, Article 56 (June 2018), 39 pages.

